當前位置:吉日网官网 - 傳統節日 - 儲氫材料有哪些

儲氫材料有哪些

儲氫合金是指在壹定溫度和氫氣壓力下,能可逆地大量吸收、儲存和釋放氫氣的金屬間化合物。

儲氫合金由兩部分組成,壹部分為吸氫元素或與氫有很強親和力的元素(A),它控制著儲氫量的多少,是組成儲氫合金的關鍵元素,主要是ⅠA~ⅤB族金屬,如Ti、Zr、Ca、Mg、V、Nb、Re(稀土元素);另壹部分則為吸氫量小或根本不吸氫的元素(B),它則控制著吸/放氫的可逆性,起調節生成熱與分解壓力的作用,如Fe、Co、Ni、Cr、Cu、Al等。圖1列出了壹些金屬氫化物的儲氫能力。

目前世界上已經研制出多種儲氫合金,按儲氫合金金屬組成元素的數目劃分,可分為:二元系、三元系和多元系;按儲氫合金材料的主要金屬元素區分,可分為:稀土系、鎂系、鈦系、釩基固溶體、鋯系等;而組成儲氫合金的金屬可分為吸氫類(用A表示)和不吸氫類(用B表示),據此又可將儲氫合金分為:AB5型、AB2型、AB型、A2B型。?

無機物及有機物儲氫材料

壹些無機物(如 N2 、CO 、CO2)能與 H2 反應 ,其產物既可以作燃料, 又可分解獲得 H2 ,是壹種目前正在研究的儲氫新技術。如碳酸氫鹽與甲酸鹽之間相互轉化的儲氫反應,反應以 Pd 或 PdO 作催化劑,吸濕性強的活性炭作載體, 以 KHCO3 或 NaHCO3 作儲 氫劑儲 氫量可達2wt %。該方法的主要優點是便於大量地儲存和運輸,安全性好,但儲氫量和可逆性都不是很好 。

有些金屬可與水反應生成氫氣 。例如 Na, 反應後生成 NaOH ,其氫氣的質量儲存密度為 3wt %。雖然這個反應是不可逆的, 但是 NaOH 可以通過太陽能爐還原為金屬 Na 。同樣, Li 也有這種過程 , 其氫氣的質量儲存密度為 6.3wt %。這種儲氫方式的主要難點是可逆性和控制金屬的還原 。目前, 對於 Zn的應用較成功。

Li3N 的理論吸氫量為 11.5wt %,在 255 ℃氫氣氛中保持半個小時, 總吸氫量可達 9.3wt %。在 200 ℃下, 給予足夠的時間, 還會有吸收 。在 200 ℃真空(1 mPa)下, 6.3wt %的氫被釋放 ,剩余的氫要在高溫(高於 320 ℃)下, 才能被釋放 。與其他金屬氫化物不同的是, 在 PCT 曲線中,Li3N 有兩個平臺:第壹個有較低的平臺壓, 第二個則是壹個斜坡。

有機物儲氫技術始於 20 世紀 80 年代。有機物儲氫是借助不飽和液體有機物與氫的壹對可逆反應,即利用催化加氫和脫氫的可逆反應來實現。加氫反應實現氫的儲存(化學鍵合),脫氫反應實現氫的釋放。有機液體氫化物儲氫作為壹種新型儲氫技術有很多優點:儲氫量大, 如苯和甲苯的理論儲氫量分別為 7.19wt %和 6.18wt %;儲氫劑和氫載體的性質與汽油類似 ,因而儲存、運輸 、維護、保養安全方便, 便於利用現有的油類儲存和運輸設施;不飽和有機液體化合物作儲氫劑可多次循環使用, 壽命可達 20 年。但這類方法在加氫、脫氫時條件比較苛刻 ,而且所使用催化劑易失活,因而還在做進壹步的研究。?

納米儲氫材料

納米材料由於具有量子尺寸效應、小尺寸效應及表面效應,呈現出許多特有的物理、化學性質, 成為物理、化學、材料等學科研究的前沿領域。儲氫合金納米化後同樣出現了許多新的熱力學和動力學特性, 如活化性能明顯提高, 具有更高的氫擴散系數和優良的吸放氫動力學性能。納米儲氫材料通常在儲氫容量、循環壽命和氫化-脫氫速率等方面比普通儲氫材料具有更優異的性能, 比表面積和表面原子數的增加使得金屬性質發生變化, 具有了塊體材料所沒有的性質。由於粒徑小, 氫更容易擴散到金屬內部形成間隙固溶體,?表面吸附現象也更加顯著,因而儲氫材料的納米化已成為當今儲氫材料的研究熱點。儲氫合金納米化為高儲氫容量的儲氫材料的研究提供了新的研究方向和思路。Tanaka 等 總結了納米儲氫合金優異動力學性能的原因: ( 1) 大量的納米晶界使得氫原子容易擴散; ( 2) 納米晶具有極高的比表面, 使氫原子容易滲透到儲氫材料內部; ( 3) 納米儲氫材料避免了氫原子透過氫化物層進行長距離擴散, 而氫原子在氫化物中的擴散是控制動力學性能最主要的因素。通常情況下 Ni-Al 合金不具備吸氫特性, 韋建軍等采用自 懸 浮 定 向 流 法 制 備 出 單 相 金 屬 間 化 合 物AlNi 納米微粒, 納米 AlNi 在壹定條件下, 可在 90—100℃ 實現吸氫-放氫過程, 其最大吸附量可達到材料自重的 7. 3% 。?

碳質材料儲氫

吸附儲氫是近幾年來出現的新型儲氫方法,具有安全可靠和儲存效率高等優點。而在吸附儲氫的材料中,碳質材料是最好的吸附劑,不僅對少數的氣體雜質不敏感,而且可反復使用。碳質儲氫材料主要是高比表面積活性炭(AC)、石墨納米纖維(GNF)、碳納米管(CNT)。?

配位氫化物儲氫

配位氫化物儲氫是利用堿金屬(Li、Na、K等)或堿土金屬(Mg、Ca等)與第三主族元素可與氫形成配位氫化物的性質。其與金屬氫化物之間的主要區別在於吸氫過程中向離子或***價化合物的轉變,而金屬氫化物中的氫以原子狀態儲存於合金中。

表1給出了部分配位氫化物,可以看出它們含有極高的儲氫容量,因而可作為優良的儲氫介質,其中LiBH4、NaBH4和KBH4已實現了工業化生產。

應當指出的是,配位氫化物室溫下它的分解速率很低,如LiBH4、NaBH4等金屬硼氫化物在幹燥或惰性氣氛中,要到300℃以上才能分解釋放氫氣,而且其循環性能的研究也較少。為此,Bogdanovic等以NaAlH4為研究對象,發現催化劑能降低其反應活化能,且Ti4+較Zr4+的催化性能要好。

對於配位氫化物的研究開發,索新的催化劑或將現有催化劑(Ti、Zr、Fe)進行優化組合以改善其低溫放氫性能,以及循環性能方面還需做更進壹步的研究。?

水合物儲氫

氣體水合物,又稱孔穴形水合物,是壹種類冰狀晶體,由水分子通過氫鍵形成的主體空穴在很弱的範德華力作用下包含客體分子組成,其壹般的反應方程為:

R+nH2O----R·nH2O(固體)十△H(反應熱)

水合物通常有3種結構,具體見圖2和表2。很多氣體或易揮發性液體都能在壹定的溫度和壓力條件下和水生成氣體水合物,例如天然氣、二氧化碳以及多種氟裏昂制冷劑。

水合物儲存氫氣具有很多的優點:首先,儲氫和放氫過程完全互逆,儲氫材料為水,放氫後的剩余產物也只有水,對環境沒有汙染,而且水在自然界中大量存在並價格低廉;其次,形成和分解的溫度壓力條件相對較低、速度快、能耗少。粉末冰形成氫水合物只需要幾分鐘,塊狀冰形成氫水合物也只需要幾小時;而水合物分解時,因為氫氣以分子的形態包含在水合物孔穴中,所以只需要在常溫常壓下氫氣就可以從水合物中釋放出來,分解過程非常安全且能耗少。因此,研究采用水合物的方式來儲存氫氣是很有意義的,美國、日本、加拿大、韓國和歐洲已經開始了初步的實驗研究和理論分析工作。

  • 上一篇:信封的格式怎麽寫
  • 下一篇:充電5分鐘行駛400km,新壹代ChaoJi充電技術了解壹下
  • copyright 2024吉日网官网