該過程如下:
四元均勻線陣的自適應波束形成
清楚的
色度控制中心
格式長;
v = 1;
m = 4;
n = 1000;%%%%%個快照
f0=21*10^3;%%%%%%%信號和幹擾頻率
f1=11*10^3;
f2=15*10^3;
omiga0 = 2 * pi * f0%%%%%信號和幹擾角頻率
omiga 1 = 2 * pi * f 1;
omiga2 = 2 * pi * f2
sita0 = 0.8%信號方向
Sita 1 = 0.4;%幹擾方向1
Sita 2 = 2.1;%幹擾方向2
對於t = 1: n%%%%%%信號
ADT(t)= sin(omiga 0 * t/(N * F0));
a 1t(t)= sin(omiga 1 * t/(N * f 1));
a2t(t)= sin(OMI ga 2 * t/(N * F2));
結束
對於I = 1: m%%%%%%信號導向向量:線性陣列形式。
ad(i,1)= exp(j *(I-1)* pi * sin(Sita 0));
a1(i,1)= exp(j *(I-1)* pi * sin(Sita 1));
a2(i,1)= exp(j *(I-1)* pi * sin(Sita 2));
結束
r =零(M,M);
對於t=1:N
x = ADT(t)* ad+a 1t(t)* a 1+a2t(t)* a2;%陣列對信號的完整響應
R = R+x * x’;%信號協方差矩陣
結束
R = R/N;%%%%%%協方差矩陣,所有快照的平均值。
miu = 1/(ad ' * inv(R)* ad);%%%%%這好像是LMS算法的公式,具體的我記不太清楚了。在這裏,我們試圖找到最佳的重量,根據這個公式,然後加權。
w = miu * inv(R)* ad;
%%%%%梁%%%%梁%%%梁%%%梁%%梁%%梁%%梁%%梁%%梁%%梁%%梁%%梁
對於sita=0:pi/100:pi
因為i=1:M
x_(i,1)= exp(j *(I-1)* pi * sin(Sita));
結束
y(1,v)= w ' * x _;%%%%%對信號進行加權以消除幹擾。
v = v+ 1;
結束
y _ max = max(y(:));%%%%%%%%規範化
y _ 1 = y/y _ max;
y _ db = 20 * log(y _ 1);
Sita = 0:pi/100:pi;
plot(sita,y)
Xlabel('sitaa ')
Ylabel(“天線增益db”)
四元均勻線陣的自適應波束形成
目標
清楚的
色度控制中心
格式長;
v = 1;
m = 4;數組元素編號
n = 100;
f0=21*10^3;
omiga0 = 2 * pi * f0
sita0 = 0.6%信號方向
對於t=1:N
ADT(t)= sin(omiga 0 * t/(N * F0));
結束
因為i=1:M
ad(i,1)= exp(j *(I-1)* pi * sin(Sita 0));
結束
r =零(4,4);
r =零(4,1);
對於t=1:N
x = ADT(t)* ad;
R = R+x * x .’;
結束
R = R/N;
miu=1/(ad。* inv(R)* ad);
w = miu * inv(R)* ad;
對於sita=0:pi/100:pi/2
因為i=1:M
a(i,1)= exp(j *(I-1)* pi * sin(Sita));
結束
y(1,v)= w . ' * a;
v = v+ 1;
結束
Sita = 0:pi/100:pi/2;
plot(sita,y)
xlabel('sita ')
Ylabel(“天線增益”)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%我的程序%%%%%%
函數界首信號
%預期信號編號:1
%幹擾信號數量:4
已知信噪比%
已知%幹比
已知%方位角
clc
全部清除;
全部關閉;
%//參數設置= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
www 1 = 0;
www2 = 0;
ww w3 = 0;
rrr的百分比=1:16000
signal _ num = 1;%信號編號
噪聲_數量= 5;%幹擾數
R0 = 0.6%圓的半徑
SP = 2000%樣本數量
n = 8;元素數量百分比
信噪比=-10;信噪比%
sir 1 = 10;%信號幹擾比1
sir 2 = 10;%信號幹擾比2
sir 3 = 10;信號幹擾比%
sir 4 = 10;
sir 5 = 10;
%///= = = = = = = = = = = = = = = = =噪聲功率與信號功率之比= = = = = = = = = = = = = = = = = = = = =
因子_噪聲_1=10。^(-sir1/10);
因子_噪聲_2=10。^(-sir2/10);
因子_噪聲_3=10。^(-sir3/10);
因子_噪聲_4=10。^(-sir4/10);
因子_噪聲_5=10。^(-sir5/10);
factor_noise_targe=10。^(-snr/10);
% //======================== ===============
d 1 = 85 * pi/180;%%幹擾方位角1
D2 = 100 * pi/180;%幹擾2的方位角
D3 = 147 * pi/180;%幹擾3的方位角
D4 = 200 * pi/180;%幹擾4的方位角
D5 = 250 * pi/180;%幹擾5的方位角
D6 = 150 * pi/180;%目標的方位角
e 1 = 15 * pi/180;%%幹擾1的俯仰角
E2 = 25 * pi/180;%幹涉2的俯仰角
E3 = 85 * pi/180;%幹涉3的俯仰角
E4 = 50 * pi/180;%幹涉4的俯仰角
E5 = 70 * pi/180;%幹涉5°的俯仰角
E6 = 85 * pi/180;%目標的俯仰角
%/= = = = = = = = = = = = = =目標信號= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
t = 1:1:SP;
fc = 2e7
ts = 1/(3e 10);
s0 = 5 * cos(2 * pi * fc * t * Ts);%目標信號
對於kk=1:N
phi _ N(kk)= 2 * pi *(kk-1)/N;
結束
%/= = = = = = = = = = = = = = = =操縱向量= = = = = = = = = = = = = = = = = = = = = = = = = = = =
a =[conj(exp(j * 2 * pi * R0 * cos(D6-phi _ n)* sin(E6)));conj(exp(j * 2 * pi * R0 * cos(d 1-phi _ n)* sin(e 1));conj(exp(j * 2 * pi * R0 * cos(D2-phi _ n)* sin(E2));conj(exp(j * 2 * pi * R0 * cos(D3-phi _ n)* sin(E3));conj(exp(j * 2 * pi * R0 * cos(D4-phi _ n)* sin(E4));conj(exp(j * 2 * pi * R0 * cos(D5-phi _ n)* sin(E5)))]';
a 1 =[conj(exp(j * 2 * pi * R0 * cos(d 1-phi _ n)* sin(e 1)));conj(exp(j * 2 * pi * R0 * cos(D2-phi _ n)* sin(E2));conj(exp(j * 2 * pi * R0 * cos(D3-phi _ n)* sin(E3));conj(exp(j * 2 * pi * R0 * cos(D4-phi _ n)* sin(E4));conj(exp(j * 2 * pi * R0 * cos(D5-phi _ n)* sin(E5)))]';
%///= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =幹擾的功率
% //取決於信號功率和SIR
PS 1 = 0;
PS2 = 0;
PS3 = 0;
ps4 = 0;
ps5 = 0;
s 1 =零(1,SP);
S2 =零(1,SP);
S3 =零(1,SP);
S4 =零(1,SP);
S5 =零(1,SP);
ps0 = S0 * S0 '/SP;%信號功率
PS 1 = Ps0 * factor _ noise _ 1;
PS2 = Ps0 * factor _ noise _ 2;
Ps3 = Ps0 *因子_噪聲_ 3;
ps4 = Ps0 * factor _ noise _ 4;
ps5 = Ps0 * factor _ noise _ 5;
%/= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
S1=normrnd(0,sqrt(Ps1/2),1,SP)+j*normrnd(0,sqrt(Ps1/2),1,SP);
S2=normrnd(0,sqrt(Ps2/2),1,SP)+j*normrnd(0,sqrt(Ps2/2),1,SP);
S3=normrnd(0,sqrt(Ps3/2),1,SP)+j*normrnd(0,sqrt(Ps3/2),1,SP);
S4=normrnd(0,sqrt(Ps4/2),1,SP)+j*normrnd(0,sqrt(Ps4/2),1,SP);
S5=normrnd(0,sqrt(Ps5/2),1,SP)+j*normrnd(0,sqrt(Ps5/2),1,SP);
%//
s =[S0;s 1;S2;S3;S4;S5];
ss 1 =[s 1;S2;S3;S4;S5];
x = A * S;%信號加幹擾
XX2 = a 1 * ss 1;接收幹擾百分比
pw _ noise = sqrt(Ps0 * factor _ noise _ targe/2);
a1=randn(N,SP);
a2=randn(N,SP);
a 1 = a 1/範數(a 1);
a2 = a2/norm(a2);
w = Pw _ noise *(a 1+sqrt(-1)* a2);
X = X+W;
%// - SMI算法。
rd = X * S0 '/SP;
r = X * X '/(SP * 1);
Wc_SMI=pinv(R)*Rd。/(Rd ' * pinv(R)* Rd);%權重向量
Wc _ SMI = Wc _ SMI/norm(Wc _ SMI);
y _ SMI = Wc _ SMI ' * X;%SMI算法恢復的信號
%// - GS算法。
m = 1;
因為i=1:400:2000
X2(:,m)=XX2(:,I);
m = m+1;
結束
a =零(1,8);
phi _ n =零(1,8);
phi = 0:pi/180:2 * pi;
θ= 0:pi/180:pi/2;
對於kk=1:8
a(kk)= 1;
phi _ n(kk)= 2 * pi *(kk-1)/8;
結束
x 1 =零(1,8);
x2 =零(1,8);
x3 =零(1,8);
x4 =零(1,8);
x5 =零(1,8);
x1=X2(:,1)';
x2=X2(:,2)';
x3=X2(:,3)';
x4=X2(:,4)';
x5=X2(:,5)';
z 1 = x 1;
z 1 _內部產品=Z1。* conj(z 1);
z 1 _ mode = sqrt(sum(z 1 _ inner _ product));
Y1=Z1。/z 1 _ mode;
內積=總和(x2。* conj(y 1));
z2 = x2-內積* y 1;
Z2 _內積=sum(Z2。* conj(Z2));
Z2 _ mode = sqrt(Z2 _ inner _ product);
Y2=Z2。/Z2 _ mode;
Inner_product1=sum(x3。* conj(y 1));
Inner_product2=sum(x3。* conj(Y2));
z3 = x3-Inner _ product 1 * y 1-Inner _ product 2 * Y2;
Z3 _內積=sum(Z3。* conj(Z3));
Z3 _ mode = sqrt(Z3 _ inner _ product);
Y3=Z3。/Z3 _ mode;
Inner_product1_0=sum(x4。* conj(y 1));
Inner_product2_0=sum(x4。* conj(Y2));
Inner_product3_0=sum(x4。* conj(Y3));
Z4 = x4-Inner _ product 1 _ 0 * y 1-Inner _ product 2 _ 0 * Y2-Inner _ product 3 _ 0 * Y3;
Z4 _內積=sum(Z4。* conj(Z4));
Z4 _ mode = sqrt(Z4 _ inner _ product);
Y4=Z4。/Z4 _ mode;
inner _ product 1 _ 1 = sum(X5。* conj(y 1));
Inner_product2_1=sum(x5。* conj(Y2));
Inner_product3_1=sum(x5。* conj(Y3));
Inner_product4_1=sum(x5。* conj(Y4));
z5 = X5-Inner _ product 1 _ 1 * y 1-Inner _ product 2 _ 1 * Y2-Inner _ product 3 _ 1 * Y3-Inner _ product 4 _ 1 * Y4;
Z5 _內積=sum(Z5。* conj(Z5));
Z5 _ mode = sqrt(Z5 _ inner _ product);
Y5=Z5。/Z5 _ mode;
%Y1
%Y2
%Y3
%Y4
%Y5
w0 =零(1,8);
w =零(1,8);
對於mm = 1:8;
w0(mm)= exp(-j * 2 * pi * R0 * cos(D6-phi _ n(mm))* sin(E6));
結束
dd1=sum(w0。* conj(y 1))* y 1;
dd2 =總和(w0。* conj(Y2))* Y2;
dd3 =總和(w0。* conj(Y3))* Y3;
dd4 =總和(w0。* conj(Y4))* Y4;
dd5 =總和(w0。* conj(Y5))* Y5;
w = w0-DD 1-dd2-dd3-dd4-dd5;
WC _ GS = w;
Wc _ GS = Wc _ GS/(norm(Wc _ GS));
y _ GS = Wc _ GS * X;由%GS算法恢復的圖像
%// - MMSE算法。
rd = X * S0 '/SP;
r = X * X '/(SP * 1);
WC _ MMSE = pinv(R)* Rd;
Wc _ MMSE = Wc _ MMSE/諾姆(Wc _ MMSE);
y _ MMSE = Wc _ MMSE ' * X;用%MMSE算法恢復信號
S0 = S0/norm(S0);
Y _ GS = Y _ GS/norm(Y _ GS);
Y _ SMI = Y _ SMI/norm(Y _ SMI);
Y _ MMSE = Y _ MMSE/諾姆(Y _ MMSE);
%數字(1)
% plot(real(S0));
% title('原始信號');
% xlabel(“采樣的快照數”);
% ylabel(“信號幅度”);
%圖(二)
% plot(real(Y _ SMI));
% title(' SMI算法處理的信號');
% xlabel(“采樣的快照數”);
% ylabel(“信號幅度”);
%圖(三)
% plot(real(Y _ GS));
% title(' G-S算法處理的信號');
% xlabel(“采樣的快照數”);
% ylabel(“信號幅度”);
%圖(4)
% plot(real(Y _ MMSE));
% for i=1:SP
% ss(i)=abs(s0(i)-y_smi(i))^2;
%結束
% q _ 1 =均值(ss);
% for i=1:SP
% ss1(i)=abs(s0(i)-y_gs(i))^2;
%結束
% q _ 2 =均值(ss 1);
% for i=1:SP
% ss2(i)=abs(s0(i)-y_mmse(i))^2;
%結束
% q _ 3 =均值(ss2);
%
% www 1 = www 1+q _ 1;
% www2 = www2+q _ 2;
% ww w3 = ww w3+q _ 3;
%結束
% www1/16000
% www2/16000
% www3/16000
phi = 0:pi/180:2 * pi;
θ= 0:pi/180:pi/2;
%
%// -形成波束。
F_mmse=zeros(91,361);
F_smi=zeros(91,361);
F _ gs =零(91,361);
對於mm=1:91
對於nn=1:361
p 1 = sin(θ(mm));
p2 = cos(phi(nn));
P3 = sin(phi(nn));
q 1 = sin(E6);
Q2 = cos(D6);
Q3 = sin(D6);
對於hh=1:8
w 1 = cos(phi _ n(hh));
w2 = sin(phi _ n(hh));
ZZ 1 = Q2 * w 1+Q3 * w2;
zz2 = p2 * w 1+P3 * w2;
ZZ = zz2 * p 1-ZZ 1 * q 1;
F_mmse(mm,nn)= F_mmse(mm,nn)+conj(Wc _ MMSE(hh))*(exp(j * 2 * pi * R0 *(zz2 * p 1));
F_smi(mm,nn)=F_smi(mm,nn)+conj(Wc _ SMI(hh))*(exp(j * 2 * pi * R0 *(zz2 * p 1));
F_gs(mm,nn)=F_gs(mm,nn)+conj((Wc _ GS(hh))')*(exp(j * 2 * pi * R0 *(zz2 * p 1));
結束
結束
結束
F _ MMSE = ABS(F _ MMSE);
F _ SMI = ABS(F _ SMI);
F _ GS = ABS(F _ GS);
圖(五)
網格(20*log10(F_MMSE))
圖(6)
網格(20*log10(F_SMI))
標題(' SMI算法波束形成');
Xlabel('方位角');
Ylabel('俯仰角');
Zlabel('振幅/dB ');
圖(7)
網格(20*log10(F_GS))
標題(' G-S算法波束形成');
Xlabel('方位角');
Ylabel('俯仰角');
Zlabel('振幅/dB ');