其切削速度、進給速度相對於傳統的切削加工,以級數級提高,切削機理也發生了根本的變化。與傳統切削加工相比,高速切削加工發生了本質性的飛躍,其單位功率的金屬切除率提高了30%~40%, 切削力降低了30%,刀具的切削壽命提高了70%,留於工件的切削熱大幅度降低,低階切削振動幾乎消失。
隨著切削速度的提高,單位時間毛坯材料的去除率增加,切削時間減少,加工效率提高,從而縮短了產品的制造周期,提高了產品的市場競爭力。同時,高速切削加工的小量快進使切削力減少,切屑的高速排除,減少了工件的切削力和熱應力變形,提高了剛性差和薄壁零件切削加工的可能性。由於切削力的降低,轉速的提高使切削系統的工作頻率遠離機床的低階固有頻率,而工件的表面粗糙度對低階頻率最為敏感,由此降低了表面粗糙度。
在模具的高淬硬鋼件(hrc45~65)的加工過程中,采用高速切削可以取代電加工和磨削拋光的工序,避免了電極的制造和費時的電加工時間,大幅度減少了鉗工的打磨與拋光量。壹些市場上越來越需要的薄壁模具工件,高速銑削可順利完成。而且在高速銑削cnc加工中心上,模具壹次裝夾可完成多工步加工。這些優點在資金回轉要求快、交貨時間緊急、產品競爭激烈的模具等行業是非常適宜的。
高速切削加工系統主要由可滿足高速切削的高速加工中心、高性能的刀具夾持系統、高速切削刀具、安全可靠的高速切削cam軟件系統等構成,因此,高速加工實質上是壹項大的系統工程。隨著切削刀具技術的進步,高速加工已可以應用於加工合金鋼(hrc>30),廣泛地應用於汽車和電子元件產品中的沖壓模、註塑模具等零件的加工。高速加工的定義依賴於被加工的工件材料的類型。例如,高速加工合金鋼采用的切削速度為500m/min,而這壹速度在加工鋁合金時為常規采用的順銑速度。
隨著高速切削加工的應用範圍擴大,對新型刀具材料的研究、刀具設計結構的改進、數控刀具路徑新策略的產生和切削條件的改善等也有所提高。而且,切削過程的計算機輔助模擬技術也出現了,這項技術對預測刀具溫度、應力、延長刀具使用壽命很有意義。鑄造、沖模、熱壓模和註塑模加工的應用代表了鑄鐵、鑄鋼和合金鋼的高速切削應用範圍的擴大。工業領先的國家在沖模和鑄模制造方面,研制時間大部分耗費在機械加工和拋光加工工序上。沖模或鑄模的機械加工和拋光加工約占整個加工費用的2/3,而高速銑可正好用來縮短研制周期,降低加工費用。