之前跟壹個之前在國內最大的數字商品交易平臺的同事大哥在壹起好好地聊了下,很有收獲。 對於數據,有壹個***識就要會看數據,通過合理及透徹的分析來驅動產品,運營及市場策略的調整。但是這些知識看數據的中級階段,高級階段則是通過龐大的多維度的數據分析,能夠預測到未來壹個季度,半年甚至壹年的業務走勢,當然預測可以有壹定的偏差在裏面。還有的就是如果要進入到新業務的擴張上,那麽能夠計算出未來的壹定周期內需要有多大的資金投入量,人員投入量,市場及運營資源投入等達到壹個什麽樣的規模,或者說反推,我想達到這樣的規模那麽需要多少投入,多長時間。這個是最高階段,在壹般情況下也許根本不會觸及到這個方面,少部分能夠做到中級階段基本上已經算是極限了。 互聯網的有諸多領域,每個領域關註的點都不壹樣。我這邊先從熟悉的社區和電子商務兩個領域來說起。說到數據首先就是要去了解統計數據、分析數據的維度是有哪些。個人認為壹般是有用戶的維度,運營的維度,在社區來說還有內容的維度,在電子商務內部有運營的維度,我把推薦的單拎出來作為壹個維度。 壹、用戶的維度 從用戶的維度來看網站數據,其實就是通常所說的網站分析層面。這個維度主要來看用戶是通過什麽渠道來到網站,在網站用戶的行為是什麽,主要的目地為市場人員提供推廣效果依據,以及幫助產品人員來分析指南各個網站上哪些頁面,哪些區域及模塊最能夠吸引用戶並及時進行策略調整。 網站分析的第壹個數據點用戶來源渠道,用戶是從哪些渠道來到我們的網站上。是直接輸入網站地址,是從收藏夾中打開收藏鏈接,還是在搜索引擎上搜索過來(那麽前二十的搜索關鍵詞都有哪些)。抑或是從微博、各個論壇等壹些新媒體上點擊我們網站鏈接進來的。如果網站現階段也在做市場推廣,最好的就是每壹個放出去的鏈接都應該帶有獨立統計標識,這樣能夠清楚地看到不同的媒體上不同的廣告位置的流量怎麽樣。這樣市場人員可以通過這些數據來發現能夠為網站帶來穩定流程的渠道,同時剔除掉效果不好的渠道。上面說的前二十的搜索關鍵詞也是做SEM確定關鍵詞的壹個重要來源。 第二個數據點是用戶在網頁上行為,就是用戶通過各種不同的方式來到我們網站上後,常有的著陸頁面是哪些,這些頁面都有什麽特點需要好好分析壹下。重點關註用戶在頁面上的點擊行為,壹般用戶會看幾屏,點擊哪些按鈕或者鏈接的概率大,在各個頁面上的停留時間是怎麽樣的。這些數據產品人員需要多關註,通過分析用戶在各個網頁上的行為,能為我們做產品決策提供很大的依據。 第三個點在用戶訪問路徑上,主要是用戶從進入著陸頁上之後,陸續會到哪些頁面上,最後在哪些頁面上進行註冊登錄操作,在哪些頁面上跳出。由這些數據可以清晰地勾勒出典型用戶的訪問路徑圖,在結合用戶來源渠道壹起來分析,就能找到那些渠道上的用戶來到網站之後,訪問深度最高,轉化率從最高,這樣市場人員也可以及時調整策略,對這些流量大,效果好的渠道加大推廣力度。 第四個點是註冊流程,壹般來說很多網站的註冊流程並不是很短,都需要至少兩步,有的能到三四步,重點關註這個是因為註冊流程繁瑣,那麽妳的推廣做到再好網站各個模塊再易用,最後的轉化率照樣慘不忍睹。通過對這個流程的監測,可以看到有意願註冊的用戶到底在哪些環節流失了,是不是填寫信息太多,是不是發送確認信息失敗等等。 最後總括起來就是,用戶來源渠道,UV,PV,停留時間,網頁點擊熱圖,壹跳率,二跳率,訪問路徑,轉化率,市場推廣還應該關註妳的CPM,CPC,以及用戶轉化成本等。 二、運營的維度 運營的維度就是用戶到了網站上後續行為,這個方面上社區和電子商務都有自己要去關註的點。 對於電子商務網站來說,用戶的維度的分析是分析用戶來源,運營的維度那就分析收入情況了。第壹個數據點是每日的訂單數,這個是要看電商網站整體的銷售情況也是最重要的壹個數據指標。第二個就是客單價了,每筆訂單的金額,基本上訂單數和客單價的乘積差不多就是電商網站的整體銷量,與實際情況的差別不是很大。接下來就是要去看訂單支付成功率,很多人都有這樣的經歷在電子商務網站上,我們可能會把很多商品放在了購物車上,但是最後肯那個會刪掉購物車上某些商品,或者說很多訂單最後並沒有被支付。電商的運營人員非常關註這個數據,如果說大量的未支付訂單,就需要去分析問題是出現哪裏。是註冊環節出了問題,還是說支付環節出問題導致用戶支付失敗。 第四個數據點在退貨率,這個數據很重要,如果有大量的退貨對於網站來說損失非常大,同時還要分析退貨的原因是什麽。 第五個就是訂單交付周期,每個訂單從用戶支付成功到送達用戶簽收的時間,當然不同的區域,壹線城市和二線城市的交付周期都有差別,但是這是考驗了電商整體的物流水平。 還有壹個不為人註意的數據點就是投訴率,電子商務的用戶體驗是壹個從線上到線下的全過程,重在服務某壹個環節出現差錯都是致命。用戶投訴,往往就是在某個環節出現了問題,留給用戶的印象非常之差。投訴率是電商整體服務水平的體驗,建立壹個品牌很難,但是毀掉壹個品牌則是非常的容易。 對於電商來說,最後壹個重點數據則在用戶的重復購買率或者二次購買率,這個則是考驗了用戶的忠誠度。某個用戶第壹次購買體驗非常好,對商品很滿意,那麽產生二次購買行為的概率就非常大。用戶多次購買的時間周期也是壹個需要關註的數據點。 對於社區來說,需要關註的運營數據跟電商就有很多差別。以優質內容分享社區為例,每天的新註冊用戶數,登錄的老用戶數,人均PV數是社區整體數據。再下來,社區每天產生的內容有多少,具體到文字,圖片,視頻等各種不同類型的內容各是多少,上前日的增長率是多少,相對於上周或者上月的增長率又是多少。同時,麽天新增關註,新增評論,轉發等等,這幾個數據,都是整個社區互動氛圍的整體表現。當然還要考慮流失情況,兩周未登錄,壹月未登錄,兩月未登錄各占到社區總註冊人數的比率,比率越高對於社區產品及運營人員來說是非常危險的,更要好好地去關註。 當然對於社區來說,優質活躍用戶是營造社區氛圍的關鍵。那麽對於這些優質用戶來說,是需要重點來關註的。通過數據來分析,達到優質標準的用戶每周增長多少,每個人本周發布的內容,各個類型的內容以及互動的數量,有多少人是處於瀕臨流失狀態。這些數據都會幫助運營人員調整自己的策略,例如看到很多用戶很活躍,但是發布內容並不好,那麽應該怎麽去引導用戶;還有用戶瀕臨流失,那麽就需要考慮用什麽方法挽回這些用戶。 三、商品及內容的維度 這個維度其實也應該放在運營的維度裏面年,但是這壹塊確實很多人都會忽略掉的,所以把這個維度也單拎出來。 在電商中,出了關註網站整體的用戶及銷售數據,還要關註單壹品類及單壹商品的數據。某壹品類的銷量,平均每次購買量,金額,以及退換貨率。對於單壹商品也是同樣的數據分析,來看此商品在壹定時期內的銷量,訂單數,金額,以及退換貨率。通過這樣的分析就能看到熱門品類和熱門商品的趨勢,後續的運營,營銷或者促銷的選擇就很清晰了。 對於社區來說也是如此,我們要看社區整體的數據情況,但是社區中內容的重要性與人的重要性同等重要。對於優質內容分享的社區來說顯得尤為重要。除了內容的文字,圖片,視頻的不同類型,還有內容本身的分類。包括是攝影,旅行,美食,時尚,動漫,電影等不同標簽的內容。在社區中內容的標簽是用戶自己添加的。那麽需要關註的第壹個數據點就是用戶自己添加的標簽有多少是本周內新增的。這樣就可以看到社區每周會要多少新鮮的內容產生。第二就是各個標簽下用戶的發布內容量,每天是多少,每周是多少。最這樣就看出哪些標簽下的內容最活躍,後續相關的運營活動就可以從這裏面找到方向。第三個數據點就是各個標簽下用戶的互動數,包括評論、轉發、收藏抑或喜歡等不同行為操作的數量,這個數據很清晰地顯示了用戶在不同標簽內容中的活躍程度,這是社區氛圍運營及活躍必不可少的數據。
上一篇:集合,集合,公式下一篇:斯特拉文斯基序列音樂研究