1.鈧 拼音:kàng 繁體字:鈧
部首:钅,部外筆畫:4,總筆畫:9 ; 繁體部首:金,部外筆畫:4,總筆畫:12
五筆86:QYMN 五筆98:QYWN 倉頡:XCYHN
筆順編號:311154135 四角號碼:80717 UniCode:CJK 統壹漢字 U+94AA
基本字義
--------------------------------------------------------------------------------
● 鈧
元素性質數據(鈧)
kàngㄎㄤˋ
◎ 壹種金屬元素,銀白色,質軟,易溶於酸。壹般在空氣中迅速氧化而失去光澤。主要存在於極稀少的鈧釔石中。可用以制特種玻璃及輕質耐高溫合金等。
漢英互譯
--------------------------------------------------------------------------------
◎ 鈧
Scandium(Sc)
English
--------------------------------------------------------------------------------
用途◎ scandium
詳細字義
--------------------------------------------------------------------------------
◎ 鈧
鈧 kàng
〈名〉
壹種白色的三價金屬元素。原子序數21[scandium]——元素符號Sc
基本詞義
--------------------------------------------------------------------------------
◎ 鈧
鈧 kàng
〈名〉
鈧(Sc)
在元素化學裏,有壹系列性質非常接近的金屬元素被稱為稀土元素。這壹系列中包括了十五個鑭系元素--鑭(La)、鈰(Ce)、鐠(Pr)、釹(Nd)、鉕(Pm)、釤(Sm)、銪(Eu)、釓(Gd)、鋱(Tb)、鏑(Dy)、鈥(Ho)、鉺(Er)、銩(Tm)、鐿(Yb)、鑥(Lu);以及和這些同族而性質相似的兩個更輕的元素:鈧(Sc)和釔(Y)。這壹系列元素最初是從瑞典產的比較稀少的礦物中發現的,\"土\"是當時對不溶於水的金屬氧化物的統稱,因此得名稀土(Rare earth)。在這十七個元素裏面,鈧的排位是最靠前的,原子序數只有21,不過就發現而言,鈧比他在元素周期表上面的左鄰右舍都要晚了差不多上百年,即使在稀土裏面,鈧的發現也不是較早的,排列在釔、鈰、鑭、鉺、鋱和鐿後面,名列第七。作為最輕的先鋒官,他的出場委實晚了壹些。原因很簡單,鈧在地殼裏的含量並不高,只有5*10-6,也就相當於每壹噸地殼物質裏面有5克(壹小塊德芙巧克力或者大白兔奶糖),不但和其他輕元素相比要低不少,在整個稀土元素中含量也僅屬中等,大概只有他最富裕的兄弟鈰的1/10。另外呢,稀土元素感覺很有點集體領導的意思,他們的礦藏仿佛是在開政治局會議壹樣,只要壹開會,這壹夥元素就往往要全部列席會議,這樣壹來,想從混生的礦藏中找到我們的鈧,其實並不容易。不過雖然壹直沒被發現,這個元素的存在卻已經有人作出過預言。在門捷列夫1869年給出的第壹版元素周期表中,就赫然在鈣的後面留有壹個原子量45的空位。後來門捷列夫將鈣之後的元素暫時嗯穡¨ka-Boron),並給出了這個元素的壹些物理化學性質。不過這個預言就像放在漂流瓶中的信箋壹樣,暫時被汪洋的學術大海靜靜湮沒了。
門捷列夫的預言沒有得到人們的註意,但是在十九世紀晚期,對稀土元素的研究卻成為了壹股熱潮。在鈧發現之前壹年,瑞士的馬利納克(de Marignac)從玫瑰紅色的鉺土中,通過局部分解硝酸鹽的方式,得到了壹種不同於鉺土的白色氧化物,他將這種氧化物命名為鐿土,這就是稀土元素發現裏面的第六名。當時老馬手頭樣品沒多少了,就建議手頭有充足鉺土的科學家多制備壹些鐿土,以研究它的性質。當時瑞典烏潑撒拉大學的尼爾森手頭正好有鉺土的樣品,他就想按照馬利納克的方法將鉺土提純,並精確測量鉺和鐿的原子量(因為他這個時候正在專註於精確測量稀土元素的物理與化學常數以期對元素周期律作出驗證)。當他經過13次局部分解之後,得到了3.5g純凈的鐿土。但是這時候奇怪的事情發生了,馬利納克給出的鐿的原子量是172.5,而尼爾森得到的則只有167.46。尼爾森敏銳地意識到這裏面有可能是什麽輕質的元素魚目混珠進去,才讓這個原子量的測定不再準斤足兩。於是他將得到的鐿土又用相同的流程繼續處理,最後當只剩下十分之壹樣品的時候,測得的原子量更是掉到了134.75;同時光譜中還發現了壹些新的吸收線。尼爾森的判斷是正確的,因此也就獲得了給孩子起名的權利。他用他的故鄉斯堪的納維亞半島給鈧命名為Scandium。1879年,他正式公布了自己的研究結果,在他的論文中,還提到了鈧鹽和鈧土的很多化學性質。不過在這篇論文中,他沒有能給出鈧的精確原子量,也還不確定鈧在元素周期中的位置。
尼爾森的好友,也是同在烏潑撒拉大學任教的克利夫也在壹起做這個工作。他從鉺土出發,將鉺土作為大量組分排除掉,再分出鐿土和鈧土之後,又從剩余物中找到了鈥和銩這兩個新的稀土元素。做為副產物,他提純了鈧土,並進壹步了解了鈧的物理和化學性質。這樣壹來,門捷列夫放出的漂流瓶沈睡了十年之後,終於被克利夫撈了起來,他認識到,鈧,就是門捷列夫的類硼。我們來看看鈧的壹些化學性質和瓶中那張古舊的羊皮紙上寫過的預言是否吻合吧。
Eka-Boron Scandium
原子量 44 45.1(克利夫,1879)
原子體積:(立方厘米/摩爾)15.0
地殼中含量:(ppm)16
元素在太陽中的含量:(ppm) 0.04
元素在海水中的含量:(ppm)
太平洋表面 0.00000035
44.955910(IUPAC,現代)
可以形成Eb2O3形式的化合物,其比重3.5,堿性強於氧化鋁,弱於氧化釔和氧化鎂;是否能與氯化銨反應還是疑問。鈧土Sc2O3,其比重3.86,堿性強於氧化鋁,弱於氧化釔和氧化鎂,與氯化銨不反應。
鹽類無色,與氫氧化鉀和碳酸鈉形成膠體沈澱,各種鹽類均難以完好結晶。鈧鹽無色,與氫氧化鉀和碳酸鈉形成膠體沈澱,硫酸鹽極難結晶。
碳酸鹽不溶於水,可能形成堿式碳酸鹽沈澱。碳酸鈧不溶於水,並容易脫掉二氧化碳。
硫酸復鹽可能不形成礬。 鈧的硫酸復鹽不成礬。
無水氯化物EbCl3揮發性低於氯化鋁,比氯化鎂更容易水解。 ScCl3升華溫度850oC,AlCl3則為100oC,在水溶液中水解。
Eb不由光譜發現。 Sc不由光譜發現。
在那個不但對於元素的電子層結構壹無所知(連電子都是1899年才發現的),甚至還有權威如杜馬這樣的化學家對原子論都持懷疑態度。能將壹個未發現的元素的性質描述得如此精準,真是讓讀者後背泛起壹層隱隱的涼意。
鈧 門捷列夫 (1834-1907)
尼爾森 (1840-1899) 克利夫 (1840-1905)
2. 光明之子
在被發現後相當長壹段時間裏,因為難於制得,鈧的用途壹直沒有表現出來。隨著對稀土元素分離方法的日益改進,如今用於提純鈧的化合物,已經有了相當成熟的工藝流程。因為鈧比起釔和鑭系元素來,氫氧化物的堿性是最弱的,所以包含了鈧的稀土元素混生礦,經過處理轉入溶液後用氨處理時,氫氧化鈧將首先析出,故應用\"分級沈澱\"法可比較容易地把它從稀土元素中分離出來。另壹種方法是利用硝酸鹽的分極分解進行分離,由於硝酸鈧最容易分解,可以達到分離出鈧的目的。另外,在鈾、釷、鎢、錫等礦藏中綜合回收伴生的鈧也是鈧的重要來源之壹。
黑稀金礦 獨居石
加多林礦 褐簾石
獲得了純凈的鈧的化合物之後,將其轉化為ScCl3,與KCl、LiCl***熔,用熔融的鋅作為陰極進行電解,使鈧就會在鋅極上析出,然後將鋅蒸去可以得到金屬鈧。這是壹種輕質的銀白色金屬,化學性質也非常活潑,可以和熱水反應生成氫氣。所以圖片中大家看到的金屬鈧被密封在瓶子裏,用氬氣加以保護,否則鈧會很快生成壹個暗黃色或者灰色的氧化層,失去那種閃亮的金屬光澤。
比較有趣的是,鈧的用途(作為主要工作物質,而不是用於摻雜的)都集中在很光明的方向,稱他為光明之子也不為過。
鈧的第壹件法寶叫做鈧鈉燈,可以用來給千家萬戶帶來光明。這是壹種金屬鹵化物電光源:在燈泡中充入碘化鈉和碘化鈧,同時加入鈧和鈉箔,在高壓放電時,鈧離子和鈉離子分別發出他們的特征發射波長的光,鈉的譜線為589.0和589.6nm兩條著名的黃色光線,而鈧的譜線為361.3~424.7nm的壹系列近紫外和藍色光發射,因為互為補色,產生的總體光色就是白色光。正是由於鈧鈉燈具有發光效率高、光色好、節電、使用壽命長和破霧能力強等特點,使其可廣泛用於電視攝像和廣場、體育館、馬路照明, 被稱為第三代光源。在中國這種燈還是作為新技術被逐漸推廣的,而在壹些發達國家,這種燈早在80年代初就被廣泛使用了。鈧的第二件法寶是太陽能光電池,可以將撒落地面的光明收集起來,變成推動人類社會的電力。在金屬-絕緣體-半導體矽光電池和太陽能電池中,鈧是最好的阻擋金屬。他的第三件法寶叫做γ射線源,這個法寶自己就能大放光明,不過這種光亮我們肉眼接收不到,是高能的光子流。我們平常從礦物中提煉出來的是45Sc,這是鈧的唯壹壹種天然同位素,每壹個45Sc的原子核中有21個質子和24個中子。倘若我們像把猴子放到太上老君的煉丹爐中煉上七七四十九天壹樣將鈧放在核反應堆中,讓他吸收中子輻射,原子核中多壹個中子的46Sc就誕生了。46Sc這種人工放射性同位素可以當作γ射線源或者示蹤原子,還可以用來對惡性腫瘤進行放射治療。還有像釔鎵鈧石榴石激光器,氟化鈧玻璃紅外光導纖維,電視機上鈧塗層的陰極射線管之類的用途簡直不知凡幾,看來鈧生來就和光明有緣呢。
3. 神奇的調料
上面說了鈧的壹些應用,不過,因為價格高昂,考慮到成本在工業產品裏很少會用到很大數量鈧和鈧的化合物,都是像燈泡裏那樣薄薄的壹層鈧箔之類的用法。而在更多壹些領域,鈧和鈧的化合物更是被作為神奇的調料使用,好像大廚手中的鹽、糖或味精,只需要壹星半點,就有畫龍點睛的作用。
在無機化學裏,摻雜是壹個非常重要的手段。在壹個作為基體的晶體結構中摻入少量的其他化合物,因為被摻雜物質在化學性質上和原有基體的不同,晶格結構會出現各種各樣的變化和缺陷,從而或者提升原有基體的性質,或者增添原來不具有的活性。比如大家最耳熟能詳的P型和N型半導體原料,就是分別在導通能力很差的單晶矽裏面,添加了因為缺少價電子導致空穴的硼,和因為富余價電子而產生自由電子的磷獲得的。我們的鈧也是壹個重要的摻雜原料,很多材料就是因為摻入了鈧獲得了意料之外的性質。
單質形式的鈧,已經被大量應用於鋁合金的摻雜。在鋁中只要加入千分之幾的鈧就會生成Al3Sc新相,對鋁合金起變質作用,使合金的結構和性能發生明顯變化。加入0.2%~0.4%的Sc(這個比例也真的和家裏炒菜放鹽的比例差不多,只需要那麽壹點)可使合金的再結晶溫度提高150~200℃,且高溫強度、結構穩定性、焊接性能和抗腐蝕性能均明顯提高,並可避免高溫下長期工作時易產生的脆化現象。高強高韌鋁合金、新型高強耐蝕可焊鋁合金、新型高溫鋁合金、高強度抗中子輻照用鋁合金等,在航天、航空、艦船、核反應堆以及輕型汽車和高速列車等方面具有非常誘人的開發前景。鈧也是鐵的優良改化劑,少量鈧可顯著提高鑄鐵的強度和硬度。另外,鈧還可用作高溫鎢和鉻合金的添加劑。當然,除了為他人做嫁衣裳之外,因為鈧具有較高熔點,而其密度卻和鋁接近,也被應用在鈧鈦合金和鈧鎂合金這樣的高熔點輕質合金上,但是這樣的稀罕東西恐怕只有航天飛機和火箭上才舍得用了,要是拿來做自行車架子,這個價值擺出去恐怕壹天能被偷上二三十次。
單質的鈧壹般應用於合金,而鈧的氧化物也是物以類聚地在陶瓷材料上面起到了重要的作用。像可以用作固體氧化物燃料電池電極材料的四方相氧化鋯陶瓷材料有壹種很特別的性質,在這種電解質的電導會隨著溫度和環境中氧的濃度增高而增大。但是這種陶瓷材料的晶體結構本身不能穩定存在,不具有工業價值;必須要在其中摻雜壹些能夠將這種結構固定下來的物質才能夠保持原有的性質。摻入6-10%的氧化鈧就好像混凝土結構壹樣,讓氧化鋯能夠穩定在四方形的晶格上。還有像給高強度,耐高溫的工程陶瓷材料氮化矽做增密劑和穩定劑。氧化鈧作為增密劑,可以在細小顆粒的邊緣生成難熔相Sc2Si2O7,從而減小工程陶瓷的高溫變形性,與添加其它氧化物相比能更好改善氮化矽的高溫機械性能。在高溫反應堆核燃料中UO2加入少量Sc2O3可避免因UO2向U3O8轉化發生的晶格轉變、體積增大和出現裂紋。
在有機化學上鈧也並非默默無聞,不過在有機反應裏面鈧的作用雖然同樣是壹種調料,卻和在無機材料裏面用於摻雜不同,而是被作為催化劑使用。Sc2O3可用於乙醇或異丙醇脫水和脫氧、乙酸分解,由CO和H2制乙烯等等中。含Sc2O3的Pt-Al催化劑更是在石油化工中作為重油氫化提凈,精煉流程的重要催化劑。而在諸如異丙苯催化裂化反應中,Sc-Y沸石催化劑比矽酸鋁的活性大1000倍;和壹些傳統的催化劑比起來,鈧催化劑的發展前景將是很光明的。
從尼爾森註意到原子量數據的虧欠到今天,鈧進入人們的視野不過壹百年二十多年,卻差不多坐了壹百年的冷板凳,直到上個世紀後期材料科學的蓬勃發展才給他帶來了生機。到今天,連同鈧在內的稀土元素都已經成為了材料科學中炙手可熱的明星,在成千上萬的體系中發揮著千變萬化的作用,每天都在給我們的生活帶來多壹點的便利,創造的經濟價值更是難以計量。按陰陽五行的說法,土生金,其信然乎?
附錄:鈧的性質
鈣 - 鈧 - 鈦
鈧
釔
元素周期表
總體特性
名稱, 符號, 序號
鈧、Sc、21
氧化態:
Main Sc+2, Sc+3
Other
電離能 (kJ /mol)
M - M+ 631
M+ - M2+ 1235
M2+ - M3+ 2389
M3+ - M4+ 7089
M4+ - M5+ 8844
M5+ - M6+ 10720
M6+ - M7+ 13320
M7+ - M8+ 15310
M8+ - M9+ 17369
M9+ - M10+ 21740
晶胞參數:
a = 330.9 pm
b = 330.9 pm
c = 527.33 pm
α = 90°
β = 90°
γ = 120°
系列 過渡金屬
族, 周期, 元素分區
3族, 4, d
密度、硬度
2985kg/m3、無數據
顏色和外表
銀白色
地殼含量
5×10-4 %
原子屬性
原子量
44.955910 原子量單位
原子半徑(計算值)
160(184)pm
***價半徑
144 pm
範德華半徑
無數據
價電子排布
[氬]3d14s2
晶體結構:晶胞為六方晶胞。
電子在每能級的排布
2,8,9,2
氧化價(氧化物)
3(弱堿性)
晶體結構
六角形
物理屬性
物質狀態
固態
熔點
1814 K(1541 °C)
沸點
3103 K(2830 °C)
摩爾體積
15.00×10-6m3/mol
汽化熱
314.2 kJ/mol
熔化熱
14.1 kJ/mol
蒸氣壓
22.1 帕(1812K)
聲速
無數據(293.15K)
其他性質
電負性
1.36(鮑林標度)
比熱
568 J/(kg·K)
電導率
1.77×106/(米歐姆)
熱導率
15.8 W/(m·K)
第壹電離能
633.1 kJ/mol
第二電離能 1235.0 kJ/mol
第三電離能 2388.6 kJ/mol
第四電離能 7090.6 kJ/mol
第五電離能 8843 kJ/mol
第六電離能 10679 kJ/mol
第七電離能 13310 kJ/mol
第八電離能 15250 kJ/mol
第九電離能 17370 kJ/mol
第十電離能 21726 kJ/mol
最穩定的同位素
同位素
豐度
半衰期
衰變模式
衰變能量
MeV
衰變產物
45Sc 100 % 穩定
46Sc 人造
83.79天 β衰變
2.367 46Ti
鈧在1879年被Lars Frederick Nilson發現,名稱由scandinavia(斯堪的那維亞半島)
我去...太多了...妳去百度百科找...都有...