斯坦利·施密特(Stanley Schmidt)首次實現了卡爾曼濾波器。卡爾曼在NASA埃姆斯研究中心訪問時,發現他的方法對於解決阿波羅計劃的軌道預測很有用,後來阿波羅飛船的導航電腦使用了這種濾波器。 關於這種濾波器的論文由Swerling (1958), Kalman (1960)與 Kalman and Bucy (1961)發表。
數據濾波是去除噪聲還原真實數據的壹種數據處理技術, Kalman濾波在測量方差已知的情況下能夠從壹系列存在測量噪聲的數據中,估計動態系統的狀態. 由於, 它便於計算機編程實現, 並能夠對現場采集的數據進行實時的更新和處理, Kalman濾波是目前應用最為廣泛的濾波方法, 在通信, 導航, 制導與控制等多領域得到了較好的應用.
表達式
X(k)=A X(k-1)+B U(k)+W(k)
背景
斯坦利·施密特(Stanley Schmidt)首次實
現了卡爾曼濾波器。卡爾曼在NASA埃姆斯研究中心訪問時,發現他的方法對於解決阿波羅計劃的軌道預測很有用,後來阿波羅飛船的導航電腦使用了這種濾波器。關於這種濾波器的論文由Swerling (1958), Kalman (1960)與 Kalman and Bucy (1961)發表。
定義
傳統的濾波方法,只能是在有用信號與噪聲具有不同頻帶的條件下才能實現.20世紀40年代,N.維納和A.H.柯爾莫哥羅夫把信號和噪聲的統計性質引進了濾波理論,在假設信號和噪聲都是平穩過程的條件下,利用最優化方法對信號真值進行估計,達到濾波目的,從而在概念上與傳統的濾波方法聯系起來,被稱為維納濾波。這種方法要求信號和噪聲都必須是以平穩過程為條件。60年代初,卡爾曼(R.E.Kalman)和布塞(R. S.Bucy)發表了壹篇重要的論文《線性濾波和預測 理論的新成果》,提出了壹種新的線性濾波和預測理由論,被稱之為卡爾曼濾波。特點是在線性狀態空間表示的基礎上對有噪聲的輸入和觀測信號進行處理,求取系統狀態或真實信號。
這種理論是在時間域上來表述的,基本的概念是:在線性系統的狀態空間表示基礎上,從輸出和輸入觀測數據求系統狀態的最優估計。這裏所說的系統狀態,是總結系統所有過去的輸入和擾動對系統的作用的最小參數的集合,知道了系統的狀態就能夠與未來的輸入與系統的擾動壹起確定系統的整個行為。
卡爾曼濾波不要求信號和噪聲都是平穩過程的假設條件。對於每個時刻的系統擾動和觀測誤差(即噪聲),只要對它們的統計性質作某些適當的假定,通過對含有噪聲的觀測信號進行處理,就能在平均的意義上,求得誤差為最小的真實信號的估計值。因此,自從卡爾曼濾波理論問世以來,在通信系統、電力系統、航空航天、環境汙染控制、工業控制、雷達信號處理等許多部門都得到了應用,取得了許多成功應用的成果。例如在圖像處理方面,應用卡爾曼濾波對由於某些噪聲影響而造成模糊的圖像進行復原。在對噪聲作了某些統計性質的假定後,就可以用卡爾曼的算法以遞推的方式從模糊圖像中得到均方差最小的真實圖像,使模糊的圖像得到復原。
性質
①卡爾曼濾波是壹個算法,它適用於線性、離散和有限維系統。每壹個有外部變量的自回歸移動平均系統(ARMAX)或可用有理傳遞函數表示的系統都可以轉換成用狀態空間表示的系統,從而能用卡爾曼濾波進行計算。
②任何壹組觀測數據都無助於消除x(t)的確定性。增益K(t)也同樣地與觀測數據無關。
③當觀測數據和狀態聯合服從高斯分布時用卡爾曼遞歸公式計算得到的是高斯隨機變量的條件均值和條件方差,從而卡爾曼濾波公式給出了計算狀態的條件概率密度的更新過程線性最小方差估計,也就是最小方差估計。
形式
卡爾曼濾波已經有很多不同的實現,卡爾曼最初提出的形式壹般稱為簡單卡爾曼濾波器。除此以外,還有施密特擴展濾波器、信息濾波器以及很多Bierman, Thornton 開發的平方根濾波器的變種。最常見的卡爾曼濾波器是鎖相環,它在收音機、計算機和幾乎任何視頻或通訊設備中廣泛存在。
實例
卡爾曼濾波的壹個典型實例是從壹組有限的,對物體位置的,包含噪聲的觀察序列中預測出物體的坐標位置及速度。在很多工程應用(雷達、計算機視覺)中都可以找到它的身影。同時,卡爾曼濾波也是控制理論以及控制系統工程中的壹個重要話題。
應用
比如,在雷達中,人們感興趣的是跟蹤目標,但目標的位置、速度、加速度的測量值往往在任何時候都有噪聲。卡爾曼濾波利用目標的動態信息,設法去掉噪聲的影響,得到壹個關於目標位置的好的估計。這個估計可以是對當前目標位置的估計(濾波),也可以是對於將來位置的估計(預測),也可以是對過去位置的估計(插值或平滑)。
擴展卡爾曼濾波(EXTEND KALMAN FILTER, EKF)
是由kalman filter考慮時間非線性的動態系統,常應用於目標跟蹤系統。
狀態估計
狀態估計是卡爾曼濾波的重要組成部分。壹般來說,根據觀測數據對隨機量進行定量推斷就是估計問題,特別是對動態行為的狀態估計,它能實現實時運行狀態的估計和預測功能。比如對飛行器狀態估計。狀態估計對於了解和控制壹個系統具有重要意義,所應用的方法屬於統計學中的估計理論。最常用的是最小二乘估計,線性最小方差估計、最小方差估計、遞推最小二乘估計等。其他如風險準則的貝葉斯估計、最大似然估計、隨機逼近等方法也都有應用。
狀態量
受噪聲幹擾的狀態量是個隨機量,不可能測得精確值,但可對它進行壹系列觀測,並依據壹組觀測值,按某種統計觀點對它進行估計。使估計值盡可能準確地接近真實值,這就是最優估計。真實值與估計值之差稱為估計誤差。若估計值的數學期望與真實值相等,這種估計稱為無偏估計。卡爾曼提出的遞推最優估計理論,采用狀態空間描述法,在算法采用遞推形式,卡爾曼濾波能處理多維和非平穩的隨機過程。
理論
卡爾曼濾波理論的提出,克服了威納濾波理論的局限性使其在工程上得到了廣泛的應用,尤其在控制、制導、導航、通訊等現代工程方面。