模糊數學
現代數學是建立在集合論的基礎上。集合論的重要意義就壹個側面看,在與它把數學的抽象能力延伸到人類認識過程的深處。壹組對象確定壹組屬性,人們可以通過說明屬性來說明概念(內涵),也可以通過指明對象來說明它。符合概念的那些對象的全體叫做這個概念的外延,外延其實就是集合。從這個意義上講,集合可以表現概念,而集合論中的關系和運算又可以表現判斷和推理,壹切現實的理論系統都壹可能納入集合描述的數學框架。
但是,數學的發展也是階段性的。經典集合論只能把自己的表現力限制在那些有明確外延的概念和事物上,它明確地限定:每個集合都必須由明確的元素構成,元素對集合的隸屬關系必須是明確的,決不能模棱兩可。對於那些外延不分明的概念和事物,經典集合論是暫時不去反映的,屬於待發展的範疇。
在較長時間裏,精確數學及隨機數學在描述自然界多種事物的運動規律中,獲得顯著效果。但是,在客觀世界中還普遍存在著大量的模糊現象。以前人們回避它,但是,由於現代科技所面對的系統日益復雜,模糊性總是伴隨著復雜性出現。
各門學科,尤其是人文、社會學科及其它“軟科學”的數學化、定量化趨向把模糊性的數學處理問題推向中心地位。更重要的是,隨著電子計算機、控制論、系統科學的迅速發展,要使計算機能像人腦那樣對復雜事物具有識別能力,就必須研究和處理模糊性。
我們研究人類系統的行為,或者處理可與人類系統行為相比擬的復雜系統,如航天系統、人腦系統、社會系統等,參數和變量甚多,各種因素相互交錯,系統很復雜,它的模糊性也很明顯。從認識方面說,模糊性是指概念外延的不確定性,從而造成判斷的不確定性。
在日常生活中,經常遇到許多模糊事物,沒有分明的數量界限,要使用壹些模糊的詞句來形容、描述。比如,比較年輕、高個、大胖子、好、漂亮、善、熱、遠……。這些概念是不可以簡單地用是、非或數字來表示的。在人們的工作經驗中,往往也有許多模糊的東西。例如,要確定壹爐鋼水是否已經煉好,除了要知道鋼水的溫度、成分比例和冶煉時間等精確信息外,還需要參考鋼水顏色、沸騰情況等模糊信息。因此,除了很早就有涉及誤差的計算數學之外,還需要模糊數學。
人與計算機相比,壹般來說,人腦具有處理模糊信息的能力,善於判斷和處理模糊現象。但計算機對模糊現象識別能力較差,為了提高計算機識別模糊現象的能力,就需要把人們常用的模糊語言設計成機器能接受的指令和程序,以便機器能像人腦那樣簡潔靈活的做出相應的判斷,從而提高自動識別和控制模糊現象的效率。這樣,就需要尋找壹種描述和加工模糊信息的數學工具,這就推動數學家深入研究模糊數學。所以,模糊數學的產生是有其科學技術與數學發展的必然性。
模糊數學的研究內容
1965年,美國控制論專家、數學家查德發表了論文《模糊集合》,標誌著模糊數學這門學科的誕生。
模糊數學的研究內容主要有以下三個方面:
第壹,研究模糊數學的理論,以及它和精確數學、隨機數學的關系。查德以精確數學集合論為基礎,並考慮到對數學的集合概念進行修改和推廣。他提出用“模糊集合”作為表現模糊事物的數學模型。並在“模糊集合”上逐步建立運算、變換規律,開展有關的理論研究,就有可能構造出研究現實世界中的大量模糊的數學基礎,能夠對看來相當復雜的模糊系統進行定量的描述和處理的數學方法。
在模糊集合中,給定範圍內元素對它的隸屬關系不壹定只有“是”或“否”兩種情況,而是用介於0和1之間的實數來表示隸屬程度,還存在中間過渡狀態。比如“老人”是個模糊概念,70歲的肯定屬於老人,它的從屬程度是 1,40歲的人肯定不算老人,它的從屬程度為 0,按照查德給出的公式,55歲屬於“老”的程度為0.5,即“半老”,60歲屬於“老”的程度0.8。查德認為,指明各個元素的隸屬集合,就等於指定了壹個集合。當隸屬於0和1之間值時,就是模糊集合。
第二,研究模糊語言學和模糊邏輯。人類自然語言具有模糊性,人們經常接受模糊語言與模糊信息,並能做出正確的識別和判斷。
為了實現用自然語言跟計算機進行直接對話,就必須把人類的語言和思維過程提煉成數學模型,才能給計算機輸入指令,建立和是的模糊數學模型,這是運用數學方法的關鍵。查德采用模糊集合理論來建立模糊語言的數學模型,使人類語言數量化、形式化。
如果我們把合乎語法的標準句子的從屬函數值定為1,那麽,其他文法稍有錯誤,但尚能表達相仿的思想的句子,就可以用以0到1之間的連續數來表征它從屬於“正確句子”的隸屬程度。這樣,就把模糊語言進行定量描述,並定出壹套運算、變換規則。目前,模糊語言還很不成熟,語言學家正在深入研究。
人們的思維活動常常要求概念的確定性和精確性,采用形式邏輯的排中律,既非真既假,然後進行判斷和推理,得出結論。現有的計算機都是建立在二值邏輯基礎上的,它在處理客觀事物的確定性方面,發揮了巨大的作用,但是卻不具備處理事物和概念的不確定性或模糊性的能力。
為了使計算機能夠模擬人腦高級智能的特點,就必須把計算機轉到多值邏輯基礎上,研究模糊邏輯。目前,模糊羅基還很不成熟,尚需繼續研究。
第三,研究模糊數學的應用。模糊數學是以不確定性的事物為其研究對象的。模糊集合的出現是數學適應描述復雜事物的需要,查德的功績在於用模糊集合的理論找到解決模糊性對象加以確切化,從而使研究確定性對象的數學與不確定性對象的數學溝通起來,過去精確數學、隨機數學描述感到不足之處,就能得到彌補。在模糊數學中,目前已有模糊拓撲學、模糊群論、模糊圖論、模糊概率、模糊語言學、模糊邏輯學等分支。
模糊數學的應用
模糊數學是壹門新興學科,它已初步應用於模糊控制、模糊識別、模糊聚類分析、模糊決策、模糊評判、系統理論、信息檢索、醫學、生物學等各個方面。在氣象、結構力學、控制、心理學等方面已有具體的研究成果。然而模糊數學最重要的應用領域是計算機職能,不少人認為它與新壹代計算機的研制有密切的聯系。
目前,世界上發達國家正積極研究、試制具有智能化的模糊計算機,1986年日本山川烈博士首次試制成功模糊推理機,它的推理速度是1000萬次/秒。1988年,我國汪培莊教授指導的幾位博士也研制成功壹臺模糊推理機——分立元件樣機,它的推理速度為1500萬次/秒。這表明我國在突破模糊信息處理難關方面邁出了重要的壹步。
模糊數學還遠沒有成熟,對它也還存在著不同的意見和看法,有待實踐去檢驗。
模糊數學是數學中的壹門新興學科,其前途未可限量。
1965年,《模糊集合》的論文發表了。作者是著名控制論專
家、美國加利福尼亞州立大學的紮德(L.A.Zadeh)教授。康托的集合論已成為現代數學的基礎,如今有人要修改集合的概念,當然是壹件破天荒的事。紮德的模糊集的概念奠定了模糊性理論的基礎。這壹理論由於在處理復雜系統特別是有人幹預的系統方面的簡捷與有力,某種程度上彌補了經典數學與統計數學的不足,迅速受到廣泛的重視。近40年來,這個領域從理論到應用,從軟技術到硬技術都取得了豐碩成果,對相關領域和技術特別是壹些高新技術的發展產生了日益顯著的影響。
有壹個古老的希臘悖論,是這樣說的:
“壹粒種子肯定不叫壹堆,兩粒也不是,三粒也不是……另壹方面,所有的人都同意,壹億粒種子肯定叫壹堆。那麽,適當的界限在哪裏?我們能不能說,123585粒種子不叫壹堆而123586粒就構成壹堆?”
確實,“壹粒”和“壹堆”是有區別的兩個概念。但是,它們的區別是逐漸的,而不是突變的,兩者之間並不存在明確的界限。換句話說,“壹堆”這個概念帶有某種程度的模糊性。類似的概念,如“年老”、“高個子”、“年輕人”、“很大”、“聰明”、“漂亮的人”、“價廉物美”等等,不勝枚舉。
經典集合論中,在確定壹個元素是否屬於某集合時,只能有兩種回答:“是”或者“不是”。我們可以用兩個值0或1加以描述,屬於集合的元素用1表示,不屬於集合的元素用0表示。然而上面提到的“年老”、“高個子”、“年輕人”、“很大”、“聰明”、“漂亮的人”、“價廉物美” 等情況要復雜得多。假如規定身高1.8米算屬於高個子範圍,那麽,1.79米的算不算?照經典集合論的觀點看:不算。但這似乎很有些悖於情理。如果用壹個圓,以圓內和圓周上的點表示集A,而且圓外的點表示不屬於A。A的邊界顯然是圓周。這是經典集合的圖示。現在,設想將高個子的集合用圖表示,則它的邊界將是模糊的,即可變的。因為壹個元素(例如身高1.75米的人)雖然不是100%的高個子,卻還算比較高,在某種程度上屬於高個子集合。這時壹個元素是否屬於集合,不能光用0和1兩個數字表示,而可以取0和1之間的任何實數。例如對1.75米的身高,可以說具有70%屬於高個子集合的程度。這樣做似乎羅嗦,但卻比較合乎實際。
精確和模糊,是壹對矛盾。根據不同情況有時要求精確,有時要求模糊。比如打仗,指揮員下達命令:“拂曉發起總攻。”這就亂套了。這時,壹定要求精確:“×月×日清晨六時正發起總攻。”我們在壹些舊電影中還能看到各個陣地的指揮員在接受命令前對對表的鏡頭,生怕出個半分十秒的誤差。但是,物極必反。如果事事要求精確,人們就簡直無法順利的交流思想——兩人見面,問:“妳好嗎?”可是,什麽叫“好”,又有誰能給“好”下個精確的定義?
有些現象本質上就是模糊的,如果硬要使之精確,自然難以符合實際。例如,考核學生成績,規定滿60分為合格。但是,59分和60分之間究竟有多大差異,僅據1分之差來區別及格和不及格,其根據是不充分的。
不僅普遍存在著邊界模糊的集合,就是人類的思維,也帶有模糊的特色。有些現象是精確的,但是,適當的模糊化可能使問題得到簡化,靈活性大為提高。例如,在地裏摘玉米,若要找壹個最大的,那很麻煩,而且近乎迂腐。我們必須把玉米地裏所有的玉米都測量壹下,再加以比較才能確定。它的工作量跟玉米地面積成正比。土地面積越大,工作越困難。然而,只要稍為改變壹下問題的提法:不要求找最大的玉米,而是找比較大的,即按通常的說法,到地裏摘個大玉米。這時,問題從精確變成了模糊,但同時也從不必要的復雜變成意外的簡單,挑不多的幾個就可以滿足要求。工作量甚至跟土地無關。因此,過分的精確實際成了迂腐,適當的模糊反而靈活。
顯然,玉米的大小,取決於它的長度、體積和重量 。大小雖是模糊概念,但長度、體積、重量等在理論上都可以是精確的。然而,人們在實際判斷玉米大小時,通常並不需要測定這些精確值。同樣,模糊的“堆”的概念是建立在精確的“粒”的基礎上,而人們在判斷眼前的東西叫不叫壹堆時,從來不用去數“粒”。有時,人們把模糊性看成壹種物理現象。近的東西看得清,遠的東西看不清,壹般的說,越遠越模糊。但是,也有例外的情況:站在海邊,海岸線是模糊的;從高空向下眺望,海岸線卻顯得十分清晰。太高了,又模糊。精確與模糊,有本質區別,但又有內在聯系,兩者相互矛盾、相互依存也可相互轉化。所以,精確性的另壹半是模糊。
對模糊性的討論,可以追溯得很早。20世紀的大哲學家羅素(B.Russel)在1923年壹篇題為《含糊性》(Vagueness)的論文裏專門論述過我們今天稱之為“模糊性”的問題(嚴格地說,兩者梢有區別),並且明確指出:“認為模糊知識必定是靠不住的,這種看法是大錯特錯的。”盡管羅素聲名顯赫,但這篇發表在南半球哲學雜誌的文章並未引起當時學術界對模糊性或含糊性的很大興趣。這並非是問題不重要,也不是因為文章寫得不深刻,而是“時候未到”。羅素精辟的觀點是超前的。長期以來,人們壹直把模糊看成貶義詞,只對精密與嚴格充滿敬意。20世紀初期社會的發展,特別是科學技術的發展,還未對模糊性的研究有所要求。事實上,模糊性理論是電子計算機時代的產物。正是這種十分精密的機器的發明與廣泛應用,使人們更深刻地理解了精密性的局限,促進了人們對其對立面或者說它的“另壹半”——模糊性的研究。
紮德1921年2月生於蘇聯巴庫,1942年畢業於伊朗德黑蘭大學電機工程系,獲學士學位。1944年獲美國麻省理工學院(MIT)電機工程系碩士學位,1949年獲美國哥倫比亞大學博士學位,隨後在哥倫比亞、普林斯頓等著名大學工作。從1959年起,在加裏福尼亞大學伯克萊分校電機工程、計算機科學系任教授至今。
紮德在20世紀50年代從事工程控制論的研究,在非線形濾波器的設計方面取得了壹系列重要成果,已被該領域視為經典並廣泛引用。60年代初期,紮德轉而研究多目標決策問題,提出了非劣解等重要概念。長期以來,圍繞決策、控制及其有關的壹系列重要問題的研究,從應用傳統數學方法和現代電子計算機解決這類問題的成敗得失中,使紮德逐步意識到傳統數學方法的局限性。他指出:“在人類知識領域裏,非模糊概念起主要作用的惟壹部門只是古典數學”,“如果深入研究人類的認識過程,我們將發現人類能運用模糊概念是壹個巨大的財富而不是包袱。這壹點,是理解人類智能和機器智能之間深奧區別的關鍵。”精確的概念可以用通常的集合來描述。模糊概念應該用相應的模糊集合來描述。紮德抓住這壹點,首先在模糊集的定量描述上取得突破,奠定了模糊性理論及其應用的基礎。
集合是現代數學的基礎,模糊集合壹提出,“模糊”觀念也滲透到許多數學分支。模糊數學的發展速度也是相當快的。從發表的論文看,幾乎是指數般的增長。模糊數學的研究可分三個方面:壹是研究模糊數學的理論,以及它和精確數學、統計數學的關系;二是研究模糊語言和模糊邏輯;三是研究模糊數學的應用。在模糊數學的研究中,目前已有模糊拓撲學、模糊群論、模糊凸論、模糊概率、模糊環論等分支。雖然模糊數學是壹門新興學科,但它已初步應用於自動控制、模式識別、系統理論、信系檢索、社會科學、心理學、醫學和生物學等方面。將來還可能出現模糊邏輯電路、模糊硬件、模糊軟件和模糊固件,出現能和人用自然語言對話、更接近於人的智能的新的壹類計算機。所以,模糊數學將越來越顯示出它的巨大生命力。
是否有人反對呢?當然有。壹些概率論學者認為模糊數學不過是概率論的壹個應用而已。壹些搞理論數學的人說這不是數學。搞應用的人則說道理說的很好,但真正的實際效果沒有。然而,國際著名的應用數學家考夫曼(A.Kauffman)教授在訪華時說:“他們的攻擊是毫無道理的,不必管人家說什麽,我們努力去做就是。”