數學常用的數學思想方法主要有:用字母表示數的思想,數形結合的思想,轉化思想 (化歸思想),分類思想,類比思想,函數的思想,方程的思想,無逼近思想等等。
1.用字母表示數的思想:這是基本的數學思想之壹 .在代數第壹冊第二章“代數初步知識”中,主要體現了這種思想。
2.數形結合:是數學中最重要的,也是最基本的思想方法之壹,是解決許多數學問題的有效思想。“數缺形時少直觀,形無數時難入微”是我國著名數學家華羅庚教授的名言,是對數形結合的作用進行了高度的概括。
3.轉化思想:在整個初中數學中,轉化(化歸)思想壹直貫穿其中。轉化思想是把壹個未知(待解決)的問題化為已解決的或易於解決的問題來解決,如化繁為簡、化難為易,化未知為已知,化高次為低次等,它是解決問題的壹種最基本的思想,它是數學基本思想方法之壹。
4.分類思想:有理數的分類、整式的分類、實數的分類、角的分類,三角形的分類、四邊形的分類、點與圓的位置關系、直線與圓的位置關系,圓與圓的位置關系等都是通過分類討論的。
5.類比:類比推理在人們認識和改造客觀世界的活動中具有重要意義.它能觸類旁通,啟發思考,不僅是解決日常生活中大量問題的基礎,而且是進行科學研究和發明創造的有力工具.
6.函數的思想 :辯證唯物主義認為,世界上壹切事物都是處在運動、變化和發展的過程中,這就要求我們教學中重視函數的思想方法的教學。
7.方程:是初中代數的主要內容.初中階段主要學習了幾類方程和方程組的解法,在初中階段就要形成方程的思想.所謂方程的思想,就是突出研究已知量與未知量之間的等量關系,通過設未知數、列方程或方程組,解方程或方程組等步驟,達到求值目的的解題思路和策略,
擴展資料:
函數思想,是指用函數的概念和性質去分析問題、轉化問題和解決問題。方程思想,是從問題的數量關系入手,運用數學語言將問題中的條件轉化為數學模型(方程、不等式、或方程與不等式的混合組),然後通過解方程(組)或不等式(組)來使問題獲解。
從問題的整體性質出發,突出對問題的整體結構的分析和改造,發現問題的整體結構特征,善於用“集成”的眼光,把某些式子或圖形看成壹個整體,把握它們之間的關聯,進行有目的的、有意識的整體處理。整體思想方法在代數式的化簡與求值、解方程(組)、幾何解證等方面都有廣泛的應用。
參考資料: