當前位置:吉日网官网 - 傳統故事 - 初中數學的四個思想是什麽?初中數學四大思想概論。

初中數學的四個思想是什麽?初中數學四大思想概論。

1,轉換思路:

在解決條件復雜或分散的幾何問題時,往往需要把不熟悉的問題轉化為熟悉的問題,把復雜的問題轉化為簡單的問題,並通過壹些轉化手段(例如,做適當的輔助線)把分散的條件適當集中起來,從而在線段、角度、形狀之間建立聯系,解決問題。

2、方程認為:

當不容易直接找到幾何中證明和計算問題的未知量時,可以根據題目給出的條件想到相關的定理,並結合圖形,選擇便於結合條件結論、圖形、定理和定義的未知量為X,從多個角度尋求等價關系(圖形與定理的位置關系、已知條件與定理的關系等。)建立方程或方程式,從而解決問題。

3、數形結合:

直角坐標系中的幾何圖形,往往可以借助點的坐標、直線的解析表達式、函數的性質,將平面幾何圖形與函數圖像結合起來,通過形狀理解數字,以數字理解形狀,借助圖形直觀加深對數量關系的理解,從而簡化幾何中的計算問題。

4、分類討論思路:

每壹個數學結論都有自己的條件,每壹種數學方法的使用往往都有其適用範圍。在我們遇到的數學問題中,有些問題的結論是不唯壹的,有些問題的結論在解題中不能以統壹的形式來研究,而有些問題的已知量是以字母的形式給出的,所以字母的不同取值也會影響問題的求解。從上述問題來看,就其解題方法和轉化手段而言,是壹致的,即把所有研究的問題根據題目的特點和要求分成幾類,轉化為幾個小問題來解決。這種根據不同情況進行分類,然後逐壹研究解決的數學思想,叫做分類討論思想。

  • 上一篇:凍幹水果的優缺點是什麽?
  • 下一篇:割包皮後有什麽要註意的嗎?有什麽禁忌嗎?
  • copyright 2024吉日网官网